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Abstract: Accurate identification and segmentation of choroidal neovascularization (CNV) is
essential for the diagnosis and management of exudative age-related macular degeneration (AMD).
Projection-resolved optical coherence tomographic angiography (PR-OCTA) enables both cross-
sectional and en face visualization of CNV. However, CNV identification and segmentation
remains difficult even with PR-OCTA due to the presence of residual artifacts. In this paper, a
fully automated CNV diagnosis and segmentation algorithm using convolutional neural networks
(CNNs) is described. This study used a clinical dataset, including both scans with and without
CNV, and scans of eyes with different pathologies. Furthermore, no scans were excluded
due to image quality. In testing, all CNV cases were diagnosed from non-CNV controls with
100% sensitivity and 95% specificity. The mean intersection over union of CNV membrane
segmentation was as high as 0.88. By enabling fully automated categorization and segmentation,
the proposed algorithm should offer benefits for CNV diagnosis, visualization monitoring.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Age related macular degeneration (AMD) is a leading cause of vision loss and irreversible
blindness [1–3]. AMD is characterized as neovascular based on the presence of choroidal
neovascularization (CNV), a pathological condition in which new vessels grow from the choroid
into the outer retina [3–6]. CNV often results in vision loss because it can result in subretinal
hemorrhage, lipid exudation, subretinal fluid, intraretinal fluid, or formation of fibrotic scars [7,8].
Fluorescein (FA) and indocyanine green angiography (ICGA) are traditionally used for CNV
identification and visualization, but drawbacks to dye based angiography include that it provides
only two-dimensional visualization of vascular networks, that invasive intravenous contrast dye
can lead to nausea and anaphylaxis [9], and that long acquisition times makes high volume
and multiple follow-up angiograms impractical. A promising alternative approach is optical
coherence tomographic angiography (OCTA), which measures flow signal in vivo by evaluating
motion contrast between subsequent OCT B-scans at the same location [10,11]. As opposed
to conventional dye-based imaging modalities, OCTA is non-invasive, has rapid acquisition,
is high-resolution, and generates three-dimensional datasets. However, OCTA is susceptible
to several imaging artifacts [11–13]. Projection artifacts cause specious flow signal in deeper
anatomical layers. CNV assessment in particular suffers, since its proper visualization requires
images of the outer retina, where projection artifacts are especially prominent due to proximity to
the highly reflective retinal pigment epithelium (RPE). Recently, projection-resolved (PR) OCTA
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[14–16] has proven adept at removing projection artifacts, and consequently shown diagnostic
potential and enabled detailed quantification of CNV [17–19].
Because it is non-invasive and images are acquired easily and rapidly in the clinical setting,

PR-OCTA provides the opportunity to develop routine imaging for CNV detection and monitoring.
Such monitoring has major clinical potential, since early detection of CNV and conversion to
exudative CNV is crucial for successful intervention. Furthermore, improved quantification of
CNV features may provide vital indicators for disease progression [20]. However, the presence of
artifacts in OCTA images require careful interpretation. In such an environment, even evaluating
images for the presence of CNV can be time consuming for clinicians. Furthermore, CNVmetrics
such as vessel density or morphology require membrane and vessel segmentation as a first step,
but feature extraction may go awry when artifacts interfere with image analysis. These concerns
argue for robust software automation solutions that will be capable of accurate identification of
CNV and its precise segmentation in real-world datasets that may include poor quality scans or
highly pathological scans in which CNV is not present.

A previous attempt at automated CNV segmentation was saliency-based [21]. This algorithm
uses a saliency map to highlight the dominant objects that have strong distinctiveness defined by
brightness, orientation contrast and position distance. The crux of this method is that CNV flow
signal is higher than artifacts or background noise. However, even with PR-OCTA, large persistent
artifacts in outer retina can sometimes remain. The saliency-based approach will segment such
artifacts as CNV, and furthermore large CNV membranes filling most of the angiogram cannot be
fully segmented with such an approach. Finally, the saliency-based algorithm always segments
CNV, regardless of whether it actually exists in an input scan. An important first step for a
completely automated approach, then, is the ability to classify scans based on the presence
or absence of CNV. However, CNV segmentation using en face outer retinal angiogram is
compromised by a variety of image features, including residual projection and motion artifacts,
as well as background noise. On scans where artifacts are small and have lower signal than the
CNV, our previous saliency-based algorithm could segment the CNV properly (Fig. 1, case1).
However, on scans where the area and signal of residual artifacts are similar to the CNVs,
the algorithm readily kept false positives on the saliency map (Fig. 1, case2). Since saliency
algorithm segments CNV based on the degree of saliency, larger CNV vessels with strong signal
are easier to separate from artifacts than smaller CNV vessels. In cases with very large CNV, the
large thick CNV vessels have a much higher flow signal than the smaller CNV capillaries and the
saliency algorithm may mistakenly segment these smaller vessels as background (Fig. 1, case3).
In a non-CNV control cases, it is important for an automated CNV segmentation algorithm to
clean up the background noise instead of segmenting false positives. The saliency algorithm also
fails in this case (Fig. 1, case4), therefore, an algorithm using CNNs was proposed in this study
to overcome each of these limitations.
Convolution neural networks (CNNs), one of the outstanding artificial intelligence (AI)

techniques, provide a feasible way to accomplish the goals in this study. Published results
indicate the high performance of CNNs adapted to complex tasks such as object classification
and segmentation [22]. In the context of structural and angiographic OCT, CNNs have been
used to identify glaucoma [23], segment non-perfusion area [24,25] and perform retinal layer
segmentation [26,27]. However, an automated CNV diagnosis and quantification system has
never been developed. As CNV represents the most important pathological development in
AMD, this is a major limitation in current clinical practice.

In this study, we developed an algorithm based on two convolutional neural networks (CNNs).
The algorithm classifies input scans based on the presence or absence of segmented CNV
membrane, and then, if CNV is present, segments the CNV vasculature it encloses. In order
to accomplish these tasks, we trained two separate CNNs, as detailed below. These networks
perform complimentary tasks, and together comprise a robust system for CNV characterization.
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Fig. 1. CNV segmentation on challenging scans using a saliency-based algorithm. Small
residual projection artifacts are excluded in the saliency map (A1&B1, highlighted by white
arrows). Strong residual artifacts in CNV and non-CNV scans were over-segmented in the
saliency map, providing false positives (A2&B2, A4&B4, highlighted by red arrows), while
large CNV was under-segmented in the saliency map, producing false negatives (A3&B3,
highlighted by green arrows).

2. Data acquisition and preprocessing

OCTA datasets with a large range of signal strength index (SSI) were collected from the retina
clinics at the Casey Eye Institute, Oregon Health & Science University, Portland, OR, USA and
Shanxi Eye Hospital, Taiyuan, Shanxi, PR China. The study was conducted in compliance with
the Declaration of Helsinki.
Participants were scanned using a 70kHz commercial OCTA system (RTVue-XR; Optovue,

Fremont, CA) with a central wavelength of 840nm. The scan area was 3 × 3mm and centered on
the fovea. Two repeat B-scans were collected at the same position, and retinal flows were detected
using the commercial split-spectrum amplitude-decorrelation angiography (SSADA) algorithm
[10]. One X-fast and one Y-fast scan were obtained and registered to suppress motion artifacts.
Patients with CNV secondary to neovascular AMD were enrolled. Control eyes without CNV
included eyes with non-neovascular AMD, diabetic retinopathy (DR), branch retinal vein/artery
occlusion (BRVO/BRAO), central serous chorioretinopathy (CSC), and healthy eyes. No scans
were excluded due to low image quality.

Input to the CNN consisted of several en face images, each of which was useful for CNV
identification or segmentation in some capacity. To generate the en face retinal angiograms used
in this study requires anatomic slab segmentation; this was accomplished using a semi-automatic
approach based on graph search [28,29] and implemented in our in-house OCTA processing
toolkit. Regarding our study aims, segmentation of the inner limiting membrane (ILM), outer
border of the outer plexiform layer (OPL), and Bruch’s membrane (BM) was pertinent, and used
to construct inner and outer retinal images (Fig. 2). The input images consisted of the uncorrected
original inner and outer retinal en face angiograms, as well as slab-subtracted [21,30,31] and
projection-resolved outer retinal angiograms [14] (Fig. 3). Most of these images are useful
for artifact removal. PR-OCTA achieves the clearest angiograms in the outer retina, but some
residual projection artifacts remain that could be confused for CNV. Slab-subtraction is a faster
and simpler method for projection artifact removal wherein flow signal from superficial slabs is
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Fig. 2. Comparison of non-CNV, including a healthy (column 1), diabetic retinopathy (DR,
column 2), and dry AMD (column 3), and CNV (wet AMD, column 4) scans with en face
outer retinal angiograms (row A) and cross-sectional structural OCT overlaid with OCTA
(row B) showing inner retinal (violet), choroidal (red), and pathological outer retinal flow
(yellow). Slab segmentation lines are the inner limiting membrane (violet), outer border of
the outer plexiform layer (yellow), and Bruch’s membrane (green). White dotted lines in row
A indicate the locations of the cross sections in row B. Red arrows indicate the pathologies
in outer retina.

Fig. 3. Input angiographic image set. (A) Original (A1) and projection-resolved (PR)
OCTA (A2) with inner retinal (violet), choroidal (red), and outer retinal (yellow) flow
overlaid on structural OCT; (B) inner retinal angiogram, with white dotted line indicating
the position of the B-scans in (A); (C) outer retinal angiogram generated from the original
OCTA demonstrated in (A1); (D) outer retinal angiogram processed by slab -subtraction; (E)
PR outer retinal angiogram. In (E) the entire CNV is preserved but some residual projection
artifacts persist.

subtracted from deeper; compared to PR-OCTA it retains fewer regions with spurious signal, but
true vessels are often interrupted or erased, severely disrupting vascular morphology. Original
uncorrected angiograms of the outer retina have the opposite problem, as they are projection
artifact-rich, with many false flow pixels mimicking superficial vasculature. Including all four
of these angiograms (original inner and outer angiograms, slab-subtracted outer retina, and
projection-resolved outer retina) allowed the CNN to efficiently differentiate artifacts from true
signal, since the original angiograms could be used to corroborate the location of false flow,
the slab-subtracted angiograms could be used to identify regions with a high probability of
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including CNV, and the PR angiograms provides excellent image quality in the region containing
CNV. Finally, an outer retinal structural volume was also included in the CNN input; since CNV
appears along with the elevation of RPE, the slab can facilitate artifact removal in regions where
the RPE is in normal (Fig. 2B1), detached (Fig. 2B2) or lost (Fig. 2B3) states. To generate tidy
outer volumes with the same size, all A-lines in the outer slab were resampled to same voxel
depth for data alignment (Fig. 4).

Fig. 4. Generation of outer retinal structural volume input. (A) Original structural OCT
volume; (B) extracted outer retinal volume; (C) original cross-sectional OCT, with anatomic
slab segmentation overlaid in violet (inner limiting membrane, ILM), yellow (outer plexiform
layer, OPL), and green (Bruch’s membrane, BM); (D) segmented outer retinal cross section,
resampled so that the volume has a constant voxel depth.

3. CNV identification and segmentation using convolutional neural networks

Using the proposed algorithm, CNV scans could be identified based on the presence of a CNV
membrane which is the damaged tissue mass within outer retina where CNVs grow into. Then,
CNV vessels were further segmented on identified CNV scans.

3.1. Algorithm outline

The proposed algorithm incorporates two CNNs, one for CNV membrane identification and
segmentation (CNN-M) and the other for pixel-wise vessel segmentation (CNN-V) (Fig. 5). The
data pipeline is as follows. First of all, both the structural and angiographic image sets are fed into
the CNN-M for CNV membrane segmentation. The CNV is diagnosed based on the presence
of a detected CNV membrane. Without CNV present, the algorithm will classify the scan as
CNV-free; however, even in some scans without CNV present, the CNN-M will be fooled into
classifying a residual artifact as CNV. Since the interference of residuals is inevitable, a size
cutoff threshold, which was estimated by maximizing the identification sensitivity in the training
dataset, was applied. If a membrane (above the size cutoff) was segmented, then the input was
diagnosed as CNV, and the PR outer retinal angiogram is multiplied by the segmented CNV
membrane probability map to suppress interference from the background. Last, the structural
volume, angiographic image set and CNV membrane probability weighted PR outer retinal
angiogram are fed into the CNN-V for CNV vessel segmentation.
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Fig. 5. Outline of the proposed automated CNV identification and segmentation method.
Input consists of the original inner retinal angiogram and original, slab-subtracted, and
projection-resolved (PR) outer retinal angiograms, and volumetric structural data from the
outer retina. We trained two separate CNNs in order to segment the CNV membrane and
vessels, respectively. The first one (CNN-M) segments CNV membrane and outputs a mask
corresponding to its location (if it is present). The second (CNN-V) segments CNV vascular
pixels within the CNV membrane output by the first CNN.

3.2. CNV membrane segmentation using convolutional neural network

Repeated pooling layers are used in many image processing networks. They are beneficial to
image classification in order to compress the key information for decision-making and extract
features across different scales. However, the width of CNV vessels can be as small as just a single
pixel. Repeated pooling layers may be problematic because they decrease feature resolution and
therefore may remove thin vessels. To preserve feature resolution while maintaining segmentation
across multiple scales, one alternative is using larger kernels. With this approach, however, the
memory and computational cost would be overly burdensome. Instead, our network design
replaced most pooling layers with atrous kernels, which do not reduce feature resolution, in the
convolutional layers [32,33]. Atrous kernels dilate 3 × 3 kernels by inserting zeros between the
kernel elements. The atrous kernel with size 1 is the original 3 × 3 kernel, while inserting one
zero between the elements creates an atrous kernel of size two, and the atrous kernel with size 3
is created by inserting two zeros (etc.). As the size of the atrous kernel increases, the field of
view is enlarged, but the memory and computational cost is nonetheless equivalent to the original
3 × 3 kernel.

The CNN architecture used for each part of the designed algorithm (membrane, CNN-M, and
vessel, CNN-V, segmentation, respectively) have different designs. For CNN-M (Fig. 6), features
in the structural volume, angiographic image set were first extracted, respectively. To feed 3D
outer retinal volumes into 2D CNN, each separate depth in the original 3D volume was input as a
separate channel. The following concatenation and convolutional layers merged the structural
and angiographic features, and then fed them into the encoder blocks for feature extraction. A
single pooling layer was added after feature merging. The encoder block was designed using
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atrous kernels, and the dilation rate increased in deeper layers. To make the best of low-level
features and to transmit the loss from deeper to shallower layers, a U-net like architecture was
applied in the decoder section. Moreover, the decision-making layer was parallelized using atrous
kernels to refer features in multi-scales, with the atrous kernel dilation rates varying from 1 to
32, increasing by multiples of 2. A softmax activation was able to output the CNV membrane
probability map.

Fig. 6. CNN architecture for CNV membrane segmentation (CNN-M). The atrous kernel
sizes (Rate = 1 to 32) are annotated below each encoder block. The number of kernels is
annotated below each convolutional layer. Label I and I/2 indicate operations on the full
(304 × 304 − pixel) and half-sized (152 × 152 − pixel) image, respectively.

Complex tasks often call for the addition of more convolutional layers and kernels, but memory
considerations induce a limit on the number the network could use. The number of kernels in
encoder and decoder layers was therefore fixed at 32. A densely connected CNN [34] structure
(modified to include atrous kernels) was applied in the encoder blocks, and features at low levels
were concatenated to deeper levels (Fig. 7). The dilation rate of each encoder block varied as
demonstrated in (Fig. 6).

Fig. 7. Encoder block architecture. The number of kernels are annotated below each
convolutional layer. Dots at intersections along the lines indicate connections between layers.
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3.3. CNV vessel segmentation using convolutional neural network

The CNN-M output is a membrane probability map. Pixels with probabilities higher than 0.5
were identified as belong to the CNV membrane area. Here, the primary task (locating the mask)
is reliant on detection across multiple scales, a challenge distinct from vessel segmentation (since
vessels mostly vary between 1 and 5 pixels in width). The CNN architecture used for membrane
segmentation was simplified for CNV vessel segmentation (Fig. 8). The pooling layers in the
feature merging section were removed to keep the resolution sufficient to segment any CNV
vessel. The dilation rate of the atrous kernels were also reduced to rate = 1, 2, 4, 8 in the
encoder and decision-making blocks.

Fig. 8. CNN architecture for CNV vessel segmentation (CNN-V). The atrous kernel sizes
(Rate = 1 to 8) are annotated below each encoder block. The number of kernels is annotated
below the convolutional layer. Label beside the block is the image size; in this case, the
network operates on the fully-sized(304 × 304 − pixel) image.

3.4. Training

3.4.1. Training dataset

The training dataset included both CNV and non-CNV control cases. The CNV patients were
diagnosed by retinal specialists, with CNV due to AMD visible using PR-OCTA. The non-CNV
control cases consist of healthy eyes and other retinal diseases including non-neovascular AMD,
diabetic retinopathy (DR), branch retinal vein/artery occlusion (BRVO/BRAO), and central
serous chorioretinopathy (CSC). A total of 1676 scans including repeat and follow-up scans
were collected from same macular area centered on the fovea. We treated the scans obtained
from follow up appointments as unique cases as the CNV patterns changed significantly between
imaging sessions. No scan was excluded due to low image quality. The datasets used for training
and testing are from completely different eyes (i.e., no single eye was included in both training
and testing) and are listed in (Table 1). In order to prevent bias, the datasets used for training
and testing were randomly selected from the entire dataset. Additionally, while the number of
scans used in the test set was smaller, the number of eyes was comparable to the training set.
The CNN’s good performance on such a unique dataset indicates that the algorithm should be
generalizable to other scans and that our results are not artificially inflated due to overfitting.
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Finally, we also examined the algorithm’s performance on individual scans from the testing
dataset that exhibit particular features that often confound OCTA data analysis; the algorithm’s
performance on these representative scans is discussed below.

Table 1. Dataset for training and testing

Training Testing

CNV Non-CNV CNV Non-CNV

Eyes/Scans 67/764 430/802 50/50 60/60

3.4.2. Ground truth

A certified grader, who is an experienced clinician, manually segmented the ground truth CNV
membrane used in training. For this purpose, we used PR outer retinal angiograms since these
include the fewest projection artifacts. To exclude any remaining artifacts, the grader also referred
to the uncorrected original angiograms of the inner and outer retina. For small CNV in low
quality scans, B-scans were also reviewed to confirm the CNV position. The CNV membrane
area was manually delineated (Fig. 9(B)). The Otsu algorithm with manual correction was applied
in the graded CNV membrane area to generate the ground truth of CNV vasculatures. To avoid
observer bias, the segmentation was reviewed by a second certified grader. If there was any
disagreement, the second grader would correct the ground truth and send it back to the first
grader for confirmation.

Fig. 9. Ground truth generation. (A) outer retina angiogram generated from projection
resolved (PR)-OCTA; (B) CNV membrane outline drawn by an expert grader; (C) CNV
vessel mask verified by an expert grader.

4. Results

4.1. CNV diagnostic accuracy

A highly sensitive algorithm for CNV identification is desirable because missed CNV may result
in vision loss that is otherwise treatable. Likewise, high specificity is also desirable for not
mistakenly identifying CNV in non-CNV eyes. However, some residual artifacts are inevitable,
and may mimic the appearance of CNV and so be erroneously segmented. Because the network
used in this study sometimes misidentifies small residual artifacts as CNV, we incorporated a
cutoff value for CNV membrane area. Any regions the CNN identified as CNV membranes
that were smaller than this cutoff were re-classified as background. This step removed many
false positive identifications from our results. We chose the size cutoff value to maximize the
detection sensitivity in order to guarantee the fewest number for false negative diagnoses, since
conversion to wet AMD is a priority in AMD monitoring. Scans with CNV membrane areas
smaller than 0.004mm2, which is equivalent to 49 − pixel area in image, were not considered to
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contain CNV. The sensitivity and specificity on our test data were 100% and 95%, respectively
(Table 2), indicating we successfully achieved the goal of no missed diagnoses on this dataset.
The area under receiver operating characteristic curve (AROC) is 0.997, which demonstrates
reliable diagnostic performance.

Table 2. CNV diagnostic accuracy

CNV membrane area (cutoff value) Sensitivity Specificity

0.004mm2 100% 95%

4.2. CNV segmentation accuracy

The CNV membrane segmentation accuracy was evaluated by intersection over union (IOU),
precision, recall, and F1 score, which are defined by:

IOU =
GT

⋂
Out

GT
⋃

Out
(1)

precision =
TP

TP + FP
(2)

recall =
TP

TP + FN
(3)

F1 = 2 ×
precision × recall
precision + recall

(4)

where GT is the manually graded CNV membrane and Out is the CNV membrane segmented by
the proposed algorithm, TP is true positive, FP is the false positive, and FN is false negative.
Overall, the algorithm achieved high scores in each of these metrics (Table 3). Comparing with
the saliency-based CNV detection method [21], the segmentation accuracy was significantly
improved using our proposed method.

Table 3. Agreement between CNV membrane outputs and ground truth (mean ± std)

Mean intersection over union(mIOU) Precision Recall F1 score

Proposed method 0.88 ± 0.10 0.95 ± 0.03 0.93 ± 0.11 0.93 ± 0.08

Saliency-based method 0.61 ± 0.23 0.65 ± 0.26 0.94 ± 0.09 0.72 ± 0.24

Repeatability of CNV membrane segmentation performed manually, using the saliency-based
method and our proposed method was measured by coefficient of variation (CV) from 28
participants with repeated scans in the testing data and compared in (Table 4). Both the ground
truth and proposed method had low CV, which indicated the good performance and repeatability
of our proposed method and the reliable ground truth for training.

In order to better elucidate these results, we also report the proposed algorithm’s performance
on several exemplar scans exhibiting a variety of features. In the scans with clear CNV vasculature
and minor artifacts (Fig. 10(A)), the CNV membrane outline and vascular patterns are prominent.
In the CNV membrane probability map obtained from CNN-M, the region with high probability
matched well with the CNV membrane area. Multiplying the PR-OCTA outer retinal angiogram
with the CNVmembrane probability map suppresses residual artifacts outside the membrane area,
which improved the reliability of CNV vessel segmentation. It is also apparent that CNN-V was
able to remove the noise in the CNV inter-capillary space (Fig. 10(E1)). The proposed method
not only demonstrated clear CNV vasculature (Fig. 10(E1)), but also excluded the artifacts
surrounding the CNV that might be mis-segmented (Fig. 10(E2)).
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Fig. 10. CNV segmentation on scans with good image quality. (A) Projection-resolved (PR)
outer retinal angiogram; (B) manually delineated CNV membrane (red outline) and vessel
(white pixels) ground truths; (C) probability map output by the membrane segmentation
CNN (CNN-M); (D) probability map output by the vessel segmentation CNN (CNN-V); (E)
segmented CNV membrane (white outline, with probability>0.5) and vessels (with pixels of
probability>0.5).

Table 4. Comparison of repeatability among ground truth, saliency-based method and our
proposed method

Ground truth Saliency-based method Our proposed method

Coefficient of variation 0.047 0.269 0.069

Data was from 28 participants with repeated scans in the testing data.

The dataset used in this study also contained challenging scans that our previous saliency-based
algorithm had difficulty correctly analyzing. One type of challenge is large CNV membrane area
with wide range of flow rates (Fig. 11(A)). Especially in the membrane periphery, where vessels
are generally smaller and have only low flow signal, the CNV area is difficult to distinguish.
The saliency-based algorithm would both reject such peripheral CNV vessels (creating false
negatives), and under-segment gaps in the CNV vasculature (Fig. 11(A1), highlighted by white
star). Using our proposed method, the entire CNV membrane region showed high probability
despite the influence of slow flow and large inter-capillary space (Fig. 11(C1)), and the residual
projection artifacts were also excluded in the probability map (Fig. 11(C2)). To accomplish
this, it was important to include all of the inner and outer retinal (original, slab-subtracted, and
PR-OCTA) angiograms in the CNN inputs, since in tandem they could indicate the location of
low-flow CNV vessels that might otherwise be mistaken for projection artifacts. After excluding
the residual artifacts in the PR outer retinal angiogram, the CNV vessels were further segmented
with high probabilities by CNN-V.

Vessels in the CNV membrane with low flow may be faint enough to appear as projection
artifacts, but in other cases projection artifacts are obtrusive enough that they appear as
prominent as any vessels in the CNV membrane (Fig. 12(A)). The saliency-based algorithm
would mis-segment such artifacts as true CNV (Fig. 1(A2) & (B2)). Our proposed method
can successfully distinguish real CNV from strong residual projection artifacts in CNV cases
(Fig. 12(A1)) and a case diagnosed with retinal angiomatous proliferation (Fig. 12(A2)), in which
the neovascularization lesion lies on top of these intense residual projection artifacts since it is
growing from inner retina down to the outer retina. As in previous example with a large CNV
membrane area, including each of the differently processed outer retinal angiograms enabled the
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Fig. 11. CNV segmentation on challenging scans containing a wide range of flow
rates. (A) Projection-resolved (PR) outer retinal angiogram; (B) manually delineated CNV
membrane (red outline) and vessels (white pixels) ground truths; (C) probability map
output by the membrane segmentation CNN (CNN-M); (D) probability map output by
the vessel segmentation CNN (CNN-V); (E) segmented CNV membrane (white outline,
with probability>0.5) and vessels (with pixels of probability>0.5). Large inter capillary
space, highlighted by stars, were correctly included in the membrane area by the proposed
algorithm.

trained network to distinguish true CNV from artifacts, since the angiographic image set and
outer retinal structural volume yield features that can uniquely identify an artifact and true signal.

Fig. 12. CNV segmentation on two cases with strong residual projection artifacts. Bottom
row shows a special case with a retinal angiomatous proliferation lesion. (A) Projection-
resolved (PR) outer retinal angiogram; (B) manually delineated CNVmembrane (red outline)
and vessel (white pixels) ground truths; (C) probability map output by the membrane
segmentation CNN (CNN-M); (D) probability map output by the vessel segmentation CNN
(CNN-V); (E) segmented CNV membrane (white outline, with probability>0.5) and vessels
(with pixels of probability>0.5).

Another source of difficulty for CNV analysis is low scan quality (Fig. 13(A)). Two common
sources of low scan quality are low signal strength and defocus. Defocus not only causes a
reduction in signal strength, but also causes broadening of capillaries and generally makes images
less clear (Fig. 13(A)). In defocused scans, the membrane outline is consequently blurred and
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indistinct. Simultaneously, such low quality scans are problematic for PR-OCTA correction,
leading to more prevalent residual projection artifacts. As in the previous examples, the full
angiographic image set was essential for correct exclusion of these artifacts, but as can be seen
(Fig. 13case2) CNN-M still incorrectly segmented some projection artifacts. However, CNN-V
further shrank the artifacts in determining the vessel probability (Fig. 13(D2)), yielding a vessel
segmentation that was correct despite the false positive membrane segmentions. With the benefits
of CNV membrane and vessel segmentation, the visualization of the CNV on defocused scans
was dramatically improved, providing an image with clear boundaries and vasculature.

Fig. 13. CNV segmentation on scans with defocusing. (A) Projection-resolved (PR) outer
retinal angiogram; (B) manually delineated ground truth of CNV membrane (red outline)
and vessels (white pixels); (C) probability map output by the membrane segmentation CNN
(CNN-M); (D) probability map output by the vessel segmentation CNN (CNN-V); (E)
segmented CNV membrane (white outline, with probability>0.5) and vessels (with pixels of
probability>0.5).

Fig. 14. The proposed method correctly classifies scans with no CNV present. Shown are a
case with dry age-related macular degeneration (AMD; row 1) and diabetic retinopathy (DR;
row 2). No CNV is delineated in ground truths (column B). Despite strong motion artifacts
(column A), the proposed method’s probability map (column C&D) does not indicate any
CNV, and so the algorithm correctly does not segment any membrane or vessels in the output
(column E).
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One more important advantage of the proposed algorithm over the saliency-based approach is
its ability to correctly omit CNV from scans in which it is not present. These scans are challenging
because even in the absence of CNV many scans contain spurious artifactual signal. In particular,
in the scans with low SSI, proprietary motion correction technology (MCT) software may fail to
suppress motion artifacts after merging one X-fast and one Y-fast scan. In the saliency-based
approach these artifacts would be identified as CNV (Fig. 1(A4) & (B4)), since they appear
as bright as real CNV. They also pose problems for differentiating artifact from signal using
the angiographic image set used in this study, since they do not share the same relationships
between the images as projection artifacts. The inclusion of the outer retinal reflectance image is
useful in such cases, since CNV development induces structural changes in the retina that can be
used to differentiate afflicted eyes from either healthy eyes or eyes that have developed different
pathology in outer retina. By including the reflectance information as well, the proposed method
was able to correctly classify eyes as CNV-free, as shown for a dry-AMD and DR case in Fig. 14.
These cases are indicative of the proposed algorithm’s robust performance, since CNV was not
detected in either.

5. Discussion and conclusion

In this study, we demonstrated a new CNV identification and segmentation algorithm using deep
learning. Two tasks were achieved in this work: first, the algorithm was able to classify CNV as
absent or present, and secondly the CNV membrane and vessels were successfully segmented.
The proposed method accomplished these tasks on a diverse dataset that included both CNV
scans and others with different pathologies, and our performance assessment did not exclude any
scans due to low image quality. The high sensitivity, specificity, and AROC values reported in
these conditions indicate our proposed method achieved robust identification and segmentation.
Since CNV is a vision-threatening development in a common retinal disease, it has been the

target of several studies seeking to use OCTA to quantify or visualize its scope. In clinical
research, CNV membrane areas are often drawn or segmented by manually adjusted thresholding
[35–38], but this is time-consuming, particularly since for accurate measurement the effect of
artifacts on the OCTA visualization must be carefully considered. At the same time, automation
approaches such as the saliency-based approach [21,30,31] are readily foiled by the presence
of artifacts, which are inevitable in clinical datasets. Because CNV lesions often grow from
their periphery, by achieving accurate segmentation of membrane area even when the peripheral
vessels are small and dim the algorithm proposed here contributes more to CNV monitoring than
the performance metrics evaluated above indicate. Furthermore, to the best of our knowledge,
all previous attempts to automate CNV identification have limited their scope to just membrane
segmentation. Since CNV vessel morphology is associated with CNV treatment response [39],
vessel segmentation is also highly desirable.

We believe that the work presented here represents a significant improvement upon previous
CNV detection and segmentation algorithms. We have already discussed the limitations of our
saliency-based algorithm [21]. We also previously published a distance mapping approach [40].
This method, in common with the saliency algorithm, was a just an intensity-based algorithm that
will necessarily detect some CNV in any input image, and so requires manual classification of
images for the presence of CNV. The distance mapping method is also vulnerable to disruptions
caused by projection or other artifacts. Our initial efforts on CNV segmentation was conducted
on the slab-subtracted outer retinal angiogram [21,30], and Zhang et al. [41,42] also proposed a
morphology and edge detection based method that relies on slab-subtraction to help mitigate
the most egregious effects from projection artifacts. But as noted (Fig. 3(D)), CNV vascular
integrity is easily damaged by slab subtraction. Finally, both of these methods, as well as our
saliency-based method, relied on hand-crafted features. CNV vascular patterns contain unique
features that differentiate them from noise that such approaches cannot, in general, use for
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segmentation (in contrast to deep learning-based approaches). The use of a CNN can circumvent
many of these difficulties. Zhang et al. reported a CNN-based outer retinal structural abnormality
detection algorithm that may detect CNV [43]; however, their approach relied exclusively on
structural OCT data, which cannot by itself differentiate CNV from other pathologies that cause
retinal layer disorganization. As a result, the specificity of this algorithm for CNV detection in
clinical datasets may be compromised.
To the best of our knowledge, we are the first group to diagnose and segment CNV from

OCTA using CNNs. By using a varied and information-rich input dataset, including outer retinal
volumetric structural data and en face angiograms of the inner and outer retina with different levels
and methods of error correction, the CNN-based algorithm was able to exclude the remaining
projection artifacts and noise from the CNV membrane and vessels. Several other design choices
contributed to the high performance of our proposed method. The designed CNNs utilized a
modified dense network with atrous kernels in the encoder blocks. Features were extracted across
multiple scales by increasing the atrous kernel dilation rate, and parallelized feature extraction
across low and high levels helped to accelerate the training progress. The number of kernels
was reduced and kept the constant to achieve a deeper networks. Several groups have reported
vessel segmentation algorithms [44–49], including some results based on CNNs [45–49], these
accomplish general vessel segmentation, rather than CNV-specific segmentation. Comparison
between these algorithms is therefore misleading, but also difficult due to problems with fairly
measuring vessel segmentation against both each other and the ground truth manual segmentation.
In particular pixel-scale variation in vascular segmentation for small vessels can lead to low
scores for common metrics such as dice coefficient or mean intersection over union, even when
the ground truth and algorithm output essentially agree. Furthermore, in such cases there is little
reason to prefer either the manually segmented ground truth or any specific algorithm output.
While we achieved highly accurate CNV diagnosis and segmentation, there are several ways

that future work could improve upon the results we present here. One issue is that layer
segmentation for the ILM, OPL and BM are required in pre-processing. Even though these
layers were automatically segmented using a graph-search based algorithm [29,42], manual
correction was sometimes needed to modify the segmentation of BM (for example under large
drusen). Future work could focus on improving the automation of this step in order to achieve a
fully automated data pipeline. Another issue is quantifying our algorithm’s performance. In
AMD scans, the entire CNV membrane area is easily quantified and compared to the manually
delineated equivalent to extract, e.g., F1 scores. Similar comparison is difficult for the output
vessel masks. Since vessels are thin, small (i.e., pixel scale) discrepancies between the manual
graded and CNN outputs can lead to significant differences when evaluating segmentation
accuracy. And with small, dim vessels, it is difficult to say which pixels exactly correspond to
true flow even for human. It is difficult to tell whether the human graded ground truth or the
CNN output is more correct. Quantitative comparisons between solutions generated by manual
grading and the CNN are therefore potentially misleading. Still, qualitative comparisons like
those presented above speak to reasonable performance.

Despite these limitations, the algorithm proposed in this work accomplishes the essential tasks
for which it was intended. Transitioning CNV segmentation to a fully automated approach will
not only increase the amount of information available during patient monitoring, but may also
reveal previously hidden indicators of CNV progression and prognosis as more data accumulates.
Tracing CNV vessels for every patient is not feasible, so the vessel segmentation presented here
offers an essential capability if we wish to monitor new and potentially better CNV biomarkers
in the clinic.
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